2013年2月6日星期三

ScienceDaily: Latest Science News: Scientists identify genetic mechanism that contributed to Irish Famine

ScienceDaily: Latest Science News

Breaking science news and articles on global warming, extrasolar planets, stem cells, bird flu, autism, nanotechnology, dinosaurs, evolution -- the latest discoveries in astronomy, anthropology, biology, chemistry, climate and environment, computers, engineering, health and medicine, math, physics, psychology, technology, and more -- from the world's leading universities and research organizations.

Scientists identify genetic mechanism that contributed to Irish Famine
http://feeds.sciencedaily.com/~r/sciencedaily/~3/EogrOsROlSM/130206190632.htm
Feb 7th 2013, 00:06

Feb. 6, 2013 — When a pathogen attacks a plant, infection usually follows after the plant's immune system is compromised. A team of researchers at the University of California, Riverside focused on Phytophthora, the pathogen that triggered the Irish Famine of the 19th century, and deciphered how it succeeded in crippling the potato plant's immune system.

The genus Phytophthora contains many notorious pathogens of crops. Phytophthora pathogens cause worldwide losses of more than $6 billion each year on potato (Phytophthora infestans) and about $2 billion each year on soybean (Phytophthora sojae).
The researchers, led by Wenbo Ma, an associate professor of plant pathology and microbiology, focused their attention on a class of essential virulence proteins produced by a broad range of pathogens, including Phytophthora, called "effectors." The effectors are delivered to, and function only in, the cells of the host plants the pathogens attack. The researchers found that Phytophthora effectors blocked the RNA silencing pathways in their host plants (such as potato, tomato, and soybean), resulting first in a suppression of host immunity and thereafter in an increase in the plants' susceptibility to disease.
"Phytophthora has evolved a way to break the immunity of its host plants," Ma explained. "Its effectors are the first example of proteins produced by eukaryotic pathogens -- nucleated single- or multi-cellular organisms -- that promote infection by suppressing the host RNA silencing process. Our work shows that RNA silencing suppression is a common strategy used by a variety of pathogens -- viruses, bacteria and Phytophthora -- to cause disease, and shows, too, that RNA silencing is an important battleground during infection by pathogens across kingdoms."
Study results appeared online Feb. 3 in Nature Genetics.
What is RNA silencing and what is its significance? RNA is made from DNA. Many RNAs are used to make proteins. However, these RNAs can be regulated by "small RNA" (snippets of RNA) that bind to them. The binding leads to suppression of gene expression. Known as RNA gene silencing, this suppression plays an important role in regulating plant growth and development. When RNA silencing is impaired by effectors, the plant is more susceptible to disease.
Basic RNA silencing processes are conserved in plant and mammalian systems. They serve as a major defense mechanism against viruses in plants and invertebrates. RNA silencing has also been implicated in anti-bacterial plant defense. The discovery by Ma's lab is the first to show that RNA silencing regulates plant defense against eukaryotic pathogens.
"Phytophthora effectors have a motif or signature -- a specific protein code -- that allows the proteins to be delivered into host cells," Ma said. "A similar motif is found in effectors of animal parasites, such as the malaria pathogen Plasmodium, suggesting an evolutionarily conserved means for delivering effectors that affect host immunity."
Next, her lab will work on extensively screening other pathogens and identifying their effectors' direct targets so that novel control strategies can be developed to manage the diseases the pathogens cause.
Ma was joined in the study by UC Riverside's Yongli Qiao, Lin Liu, Cristina Flores, James Wong, Jinxia Shi, Xianbing Wang, Xigang Liu, Qijun Xiang, Shushu Jiang, Howard S. Judelson and Xuemei Chen; Fuchun Zhang at Xinjiang University, China; and Qin Xiong and Yuanchao Wang at Nanjing Agricultural University, China.
The research was supported by a National Science Foundation grant to Ma and grants from the U.S. Department of Agriculture (USDA) to Judelson and Chen.
Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by University of California - Riverside.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:
Yongli Qiao, Lin Liu, Qin Xiong, Cristina Flores, James Wong, Jinxia Shi, Xianbing Wang, Xigang Liu, Qijun Xiang, Shushu Jiang, Fuchun Zhang, Yuanchao Wang, Howard S Judelson, Xuemei Chen, Wenbo Ma. Oomycete pathogens encode RNA silencing suppressors. Nature Genetics, 2013; DOI: 10.1038/ng.2525



Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.
This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers. Five Filters recommends: Eyes Like Blank Discs - The Guardian's Steven Poole On George Orwell's Politics And The English Language.



You are receiving this email because you subscribed to this feed at http://blogtrottr.com

If you no longer wish to receive these emails, you can unsubscribe here:
http://blogtrottr.com/unsubscribe/cz0/tSbHWJ

没有评论:

发表评论

博客归档