2013年10月25日星期五

ScienceDaily: Latest Science News: Physicists observe the formation of a many-body system in experiment

ScienceDaily: Latest Science News

Breaking science news and articles on global warming, extrasolar planets, stem cells, bird flu, autism, nanotechnology, dinosaurs, evolution -- the latest discoveries in astronomy, anthropology, biology, chemistry, climate and environment, computers, engineering, health and medicine, math, physics, psychology, technology, and more -- from the world's leading universities and research organizations.

Physicists observe the formation of a many-body system in experiment
http://feeds.sciencedaily.com/~r/sciencedaily/~3/DOhpt2BEnzg/131025091832.htm
Oct 25th 2013, 13:18

Oct. 25, 2013 — How large does a group of particles have to be to render moot its exact number of particles? In experiments using ultracold atoms, Heidelberg physicists succeeded in observing the transition to a many-body system well described by an infinite number of particles. In philosophy, this problem is known as the sorites paradox. The essential question is when a collection of elements forms a "heap." The experiments were conducted by researchers of Heidelberg University under the direction of Prof. Dr. Selim Jochim at the Max Planck Institute for Nuclear Physics.

Share This:






The results of the research were published in Science.
"Systems comprising many particles are generally extremely difficult to describe in a microscopically exact way. Hence researchers tend to work with effective theories that look not at the individual particles, such as gas molecules in the air, but at macroscopic values such as pressure or temperature," explains Jochim.
The Heidelberg researchers prepared the systems so small they could still be described microscopically. Starting with a single atom, the scientists increased the number of particles one by one. The energy of the entire system was measured with each added particle. The experiments ultimately showed that for the system under study very few atoms were needed to apply the theory derived for an infinitely large system. "We can identify this as the direct transition from a few-body system into a many-body system. Simply put, in our system it takes only about four atoms to form a 'heap' in the sense of the sorites paradox," continues the Heidelberg physicist.
Two years ago Jochim's team was able to reproducibly control the system used for the current experiments in all of its properties, including the exact number of particles, their state of motion and their interaction. "To date we are the only research team in the world able to prepare such systems," Prof. Jochim points out. "For the first time, these results realise our vision to gain a much deeper insight into the nature of fundamental few-body systems by these experiments.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is based on materials provided by Heidelberg, Universität.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:
A. N. Wenz, G. Zurn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim. From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time. Science, 2013; 342 (6157): 457 DOI: 10.1126/science.1240516



Note: If no author is given, the source is cited instead.

This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers. Five Filters recommends: Massacres That Matter - Part 1 - 'Responsibility To Protect' In Egypt, Libya And SyriaMassacres That Matter - Part 2 - The Media Response On Egypt, Libya And SyriaNational demonstration: No attack on Syria - Saturday 31 August, 12 noon, Temple Place, London, UK



You are receiving this email because you subscribed to this feed at https://blogtrottr.com

If you no longer wish to receive these emails, you can unsubscribe here:
https://blogtrottr.com/unsubscribe/cz0/tSbHWJ

没有评论:

发表评论

博客归档