ScienceDaily: Latest Science News
Breaking science news and articles on global warming, extrasolar planets, stem cells, bird flu, autism, nanotechnology, dinosaurs, evolution -- the latest discoveries in astronomy, anthropology, biology, chemistry, climate and environment, computers, engineering, health and medicine, math, physics, psychology, technology, and more -- from the world's leading universities and research organizations.
Cerebral sensory development: Genetic programming versus environmental stimuli
http://feeds.sciencedaily.com/~r/sciencedaily/~3/oP4WDByDtLw/131222205648.htm
Dec 23rd 2013, 01:56
Dec. 22, 2013 — Hiroshi Kawasaki and colleagues at Kanazawa University, Tokyo University, Tokyo Institute of Technology and Kumamoto University in Japan have identified how sensory map development is regulated in mice pups at birth, and the molecular signalling responsible.
Share This:
The part of the brain associated with the sense of touch -- the somatosensory cerebral cortex -- has attracted numerous studies aimed at determining the influence of extrinsic environmental and intrinsic genetic factors in sensory development. Understanding the role of these factors in sensory map formation and development may provide insights into the mechanisms behind other circuits in the central nervous system.
Now Hiroshi Kawasaki and colleagues at Kanazawa University, Tokyo University, Tokyo Institute of Technology and Kumamoto University in Japan have identified how sensory map development is regulated in mice pups at birth, and the molecular signalling responsible.
Rodents have a sensory map in the primary somatosensory cerebral cortex, characterized by cell clusters called barrels filled with patches of nerve fibre. Inputs from the part of the brain that link to the rodent's whiskers terminate at these barrels. The barrel distribution pattern is the same as the distribution of the whiskers on the snout and forms soon after birth.
The researchers induced preterm birth in mice and quantitatively compared the degree of development of whisker-related barrel pattern formation with mice born after the full term of pregnancy. At set periods after conception, barrel formation was significantly more advanced in the mice born preterm. Further experiments ruled out the role of maternal hormones prior to birth and identified the critical effect of serotonin reductions during the days after birth.
"Interestingly, the regulatory mechanisms described here were also found to regulate eye-specific segregation in the visual system, raising the possibility that they are utilized in various brain regions," the researchers suggest. They add that further investigation of the range of roles of serotonin and the underlying mechanisms will be interesting for future research.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is based on materials provided by Organization of Frontier Science and Innovation, Kanazawa University.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
Tomohisa Toda, Daigo Homma, Hirofumi Tokuoka, Itaru Hayakawa, Yukihiko Sugimoto, Hiroshi Ichinose, Hiroshi Kawasaki. Birth Regulates the Initiation of Sensory Map Formation through Serotonin Signaling. Developmental Cell, 2013; 27 (1): 32 DOI: 10.1016/j.devcel.2013.09.002
Note: If no author is given, the source is cited instead.
This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers.
You are receiving this email because you subscribed to this feed at https://blogtrottr.com
If you no longer wish to receive these emails, you can unsubscribe here:
https://blogtrottr.com/unsubscribe/cz0/tSbHWJ
没有评论:
发表评论