2013年5月29日星期三

ScienceDaily: Latest Science News: Weightlessness of space used to design better materials for Earth

ScienceDaily: Latest Science News

Breaking science news and articles on global warming, extrasolar planets, stem cells, bird flu, autism, nanotechnology, dinosaurs, evolution -- the latest discoveries in astronomy, anthropology, biology, chemistry, climate and environment, computers, engineering, health and medicine, math, physics, psychology, technology, and more -- from the world's leading universities and research organizations.

Weightlessness of space used to design better materials for Earth
http://feeds.sciencedaily.com/~r/sciencedaily/~3/PbmEoHNZO8E/130529133505.htm
May 29th 2013, 17:35

May 29, 2013 — Researchers from Northeastern University are among the many scientists helping NASA use the weightlessness of space to design stronger materials here on Earth.
Structural alloys might not sound familiar, but they are an integral part of everyday materials, such as aircraft wings, car bodies, engine blocks, or gas pipelines. These materials are produced through solidification­ -- a process similar to the making of ice cubes. "Solidification happens all around us, either naturally, as during the crystallization of familiar snow-flakes in the atmosphere, or in technological processes used to fabricate a host of materials, from the large silicon crystals used for solar panels to the making of almost any human-made object or structure that needs to withstand large forces, like a turbine blade," said Northeastern University Prof. Alain Karma, who was a collaborator in this study.
The transition of a structural alloy from liquid to solid is morphologically unstable, meaning that the interface between solid and liquid evolves from a planar morphology to a non-planar cellular structure during solidification -- essentially, the same instability is responsible for the branched star shape of snow flakes.
But what if you could take gravity out of the mix? Researchers say by observing the solidification process in a microgravity environment -- in this case, the International Space Station -- they were able to study how this morphological instability develops in three dimensions to shape the structure of materials on a micron scale. "Without gravity, there is no buoyancy force to mix the atomic constituents in the melt by fluid flow," said Prof. Karma. "As a result, solidification creates unique, more organized, structures that cannot be observed on earth. Understanding how those structures form in space gives insight for designing lighter and stronger materials that can be made on earth."
This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers. Five Filters recommends: 'You Say What You Like, Because They Like What You Say' - http://www.medialens.org/index.php/alerts/alert-archive/alerts-2013/731-you-say-what-you-like-because-they-like-what-you-say.html



You are receiving this email because you subscribed to this feed at http://blogtrottr.com

If you no longer wish to receive these emails, you can unsubscribe here:
http://blogtrottr.com/unsubscribe/cz0/tSbHWJ

没有评论:

发表评论

博客归档