2013年2月27日星期三

ScienceDaily: Latest Science News: Faster, more efficient technique for creating high-density ceramics

ScienceDaily: Latest Science News

Breaking science news and articles on global warming, extrasolar planets, stem cells, bird flu, autism, nanotechnology, dinosaurs, evolution -- the latest discoveries in astronomy, anthropology, biology, chemistry, climate and environment, computers, engineering, health and medicine, math, physics, psychology, technology, and more -- from the world's leading universities and research organizations.

Faster, more efficient technique for creating high-density ceramics
http://feeds.sciencedaily.com/~r/sciencedaily/~3/D7Kri9w5O7k/130227085946.htm
Feb 27th 2013, 13:59

Feb. 27, 2013 — A researcher from North Carolina State University has developed a technique for creating high-density ceramic materials that requires far lower temperatures than current techniques -- and takes less than a second, as opposed to hours. Ceramics are used in a wide variety of technologies, including body armor, fuel cells, spark plugs, nuclear rods and superconductors.

At issue is a process known as "sintering," which is when ceramic powders (such as zirconia) are compressed into a desired shape and exposed to high heat until the powder particles are bound together into a solid, but slightly porous, material. But new research from Dr. Jay Narayan, John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State, may revolutionize the sintering process.
Narayan's new technique, selective-melt sintering, allows sintering of yttria-stabilized zirconia at 800 degrees Celsius (C) -- instead of the conventional 1450 C. In addition, using the selective-melt sintering technique, it is possible to sinter zirconia at 800 C in less than a second, and create a material with no porosity at all. In contrast, traditional sintering techniques take four to five hours at 1450 C.
"This technique allows you to achieve 'theoretical density,' meaning it eliminates all of the porosity in the material," Narayan says. "This increases the strength of the ceramic, as well as improving its optical, magnetic and other properties."
The key to Narayan's approach is the application of an electric field, at approximately 100 volts per centimeter, to the material. When this field is applied, it creates subtle changes in the material's "grain boundaries" -- where atoms from different crystals meet in the material. Namely, the field draws "defects" to the grain boundary. These defects consist of vacancies (missing atoms) which can carry charges. The defects are negatively charged and draw current from the electric field to the area -- which raises the temperature along the grain boundary.
Raising the temperature along the grain boundary means that the material can be sintered at a much lower temperature, because sintering is done by selectively melting the grain boundaries to fuse the crystals together.
Normally you would have to apply enough heat to raise the mass of all the material to the melting point, even though you only need to melt the grain boundary. "Pre-heating" the grain boundary with an electric field is what allowed Narayan to lower the sintering temperature from 1450 C to 800 C and sinter the material much more quickly.
An invited viewpoint paper describing the work, "New mechanism for field-assisted processing and flash sintering of materials," is published online in Scripta Materialia. Narayan is the sole author.
Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by North Carolina State University.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:
J. Narayan. New Mechanism for field-assisted processing and flash sintering of materials. Scripta Materialia, 2013; DOI: 10.1016/j.scriptamat.2013.02.020



Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers. Five Filters recommends: Eyes Like Blank Discs - The Guardian's Steven Poole On George Orwell's Politics And The English Language.



You are receiving this email because you subscribed to this feed at http://blogtrottr.com

If you no longer wish to receive these emails, you can unsubscribe here:
http://blogtrottr.com/unsubscribe/cz0/tSbHWJ

没有评论:

发表评论

博客归档