ScienceDaily: Latest Science News
Breaking science news and articles on global warming, extrasolar planets, stem cells, bird flu, autism, nanotechnology, dinosaurs, evolution -- the latest discoveries in astronomy, anthropology, biology, chemistry, climate and environment, computers, engineering, health and medicine, math, physics, psychology, technology, and more -- from the world's leading universities and research organizations.
Cell circuits remember their history: Engineers design new synthetic biology circuits that combine memory and logic
http://feeds.sciencedaily.com/~r/sciencedaily/~3/scKba2x8aKQ/130211104047.htm
Feb 11th 2013, 15:40
Feb. 11, 2013 — MIT engineers have created genetic circuits in bacterial cells that not only perform logic functions, but also remember the results, which are encoded in the cell's DNA and passed on for dozens of generations.
The circuits, described in the Feb. 10 online edition of Nature Biotechnology, could be used as long-term environmental sensors, efficient controls for biomanufacturing, or to program stem cells to differentiate into other cell types.
"Almost all of the previous work in synthetic biology that we're aware of has either focused on logic components or on memory modules that just encode memory. We think complex computation will involve combining both logic and memory, and that's why we built this particular framework to do so," says Timothy Lu, an MIT assistant professor of electrical engineering and computer science and biological engineering and senior author of the Nature Biotechnology paper.
Lead author of the paper is MIT postdoc Piro Siuti. Undergraduate John Yazbek is also an author.
More than logic
Synthetic biologists use interchangeable genetic parts to design circuits that perform a specific function, such as detecting a chemical in the environment. In that type of circuit, the target chemical would generate a specific response, such as production of green fluorescent protein (GFP).
Circuits can also be designed for any type of Boolean logic function, such as AND gates and OR gates. Using those kinds of gates, circuits can detect multiple inputs. In most of the previously engineered cellular logic circuits, the end product is generated only as long as the original stimuli are present: Once they disappear, the circuit shuts off until another stimulus comes along.
Lu and his colleagues set out to design a circuit that would be irreversibly altered by the original stimulus, creating a permanent memory of the event. To do this, they drew on memory circuits that Lu and colleagues designed in 2009. Those circuits depend on enzymes known as recombinases, which can cut out stretches of DNA, flip them, or insert them. Sequential activation of those enzymes allows the circuits to count events happening inside a cell.
Lu designed the new circuits so that the memory function is built into the logic gate itself. With a typical cellular AND gate, the two necessary inputs activate proteins that together turn on expression of an output gene. However, in the new circuits, the inputs stably alter regions of DNA that control GFP production. These regions, known as promoters, recruit the cellular proteins responsible for transcribing the GFP gene into messenger RNA, which then directs protein assembly.
For example, in one circuit described in the paper, two DNA sequences called terminators are interposed between the promoter and the output gene (GFP, in this case). Each of these terminators inhibits the transcription of the output gene and can be flipped by a different recombinase enzyme, making the terminator inactive.
Each of the circuit's two inputs turns on production of one of the recombinase enzymes needed to flip a terminator. In the absence of either input, GFP production is blocked. If both are present, both terminators are flipped, resulting in their inactivation and subsequent production of GFP.
Once the DNA terminator sequences are flipped, they can't return to their original state -- the memory of the logic gate activation is permanently stored in the DNA sequence. The sequence also gets passed on for at least 90 generations. Scientists wanting to read the cell's history can either measure its GFP output, which will stay on continuously, or if the cell has died, they can retrieve the memory by sequencing its DNA.
Using this design strategy, the researchers can create all two-input logic gates and implement sequential logic systems. "It's really easy to swap things in and out," says Lu, who is also a member of MIT's Synthetic Biology Center. "If you start off with a standard parts library, you can use a one-step reaction to assemble any kind of function that you want."
Long-term memory
Such circuits could also be used to create a type of circuit known as a digital-to-analog converter. This kind of circuit takes digital inputs -- for example, the presence or absence of single chemicals -- and converts them to an analog output, which can be a range of values, such as continuous levels of gene expression.
For example, if the cell has two circuits, each of which expresses GFP at different levels when they are activated by their specific input, those inputs can produce four different analog output levels. Moreover, by measuring how much GFP is produced, the researchers can figure out which of the inputs were present.
That type of circuit could offer better control over the production of cells that generate biofuels, drugs or other useful compounds. Instead of creating circuits that are always on, or using promoters that need continuous inputs to control their output levels, scientists could transiently program the circuit to produce at a certain level. The cells and their progeny would always remember that level, without needing any more information.
Used as environmental sensors, such circuits could also provide very precise long-term memory. "You could have different digital signals you wanted to sense, and just have one analog output that summarizes everything that was happening inside," Lu says.
This platform could also allow scientists to more accurately control the fate of stem cells as they develop into other cell types. Lu is now working on engineering cells to follow sequential development steps, depending on what kinds of inputs they receive from the environment.
Michael Jewett, an assistant professor of chemical and biological engineering at Northwestern University, says the new design represents a "huge advancement in DNA-encoded memory storage."
"I anticipate that the innovations reported here will help to inspire larger synthetic biology efforts that push the limits of engineered biological systems," says Jewett, who was not involved in the research.
The research was funded by the Office of Naval Research and the Defense Advanced Research Projects Agency.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
Piro Siuti, John Yazbek, Timothy K Lu. Synthetic circuits integrating logic and memory in living cells. Nature Biotechnology, 2013; DOI: 10.1038/nbt.2510
Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.
This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers. Five Filters recommends: Eyes Like Blank Discs - The Guardian's Steven Poole On George Orwell's Politics And The English Language.
You are receiving this email because you subscribed to this feed at http://blogtrottr.com
If you no longer wish to receive these emails, you can unsubscribe here:
http://blogtrottr.com/unsubscribe/cz0/tSbHWJ
订阅:
博文评论 (Atom)
博客归档
-
▼
2013
(16909)
-
▼
二月
(1359)
- ScienceDaily: Latest Science News: 'Crazy-busy' Ca...
- ScienceDaily: Latest Science News: Metal ions regu...
- 互联网新闻-新浪科技: JG Capital维持优酷增持评级 目标股价22美元
- 互联网新闻-新浪科技: Facebook发力Exchange实时竞价广告挑战谷歌
- 互联网新闻-新浪科技: 京东回应阿芙欠款事件 称结款延迟源于发票错误
- 科技要闻-新浪科技: 京东回应阿芙欠款事件 称结款延迟源于发票错误
- 焦点新闻-新浪科技: 巴诺第三财季意外亏损 Nook业务营收锐减
- 焦点新闻-新浪科技: Facebook发力Exchange实时竞价广告挑战谷歌
- 焦点新闻-新浪科技: 黑莓高管称正考虑推出新平板电脑
- ScienceDaily: Latest Science News: Novel wireless ...
- ScienceDaily: Latest Science News: After the human...
- ScienceDaily: Latest Science News: Fusion as an en...
- 科技要闻-新浪科技: 巴诺第三财季意外亏损 Nook业务营收锐减
- ScienceDaily: Latest Science News: Atoms with quan...
- ScienceDaily: Latest Science News: Three overstret...
- ScienceDaily: Latest Science News: River regulatio...
- Confirm your unsubscription from '焦点新闻-新浪科技'
- 互联网新闻-新浪科技: ICANN副总裁李晓东:北京将设立首个代表处
- Solidot: 寻找史前裸女艺术品的意义
- Solidot: Ada Initiative阻止关于性的演讲引发争议
- 科技要闻-新浪科技: ICANN副总裁李晓东:北京将设立首个代表处
- 焦点新闻-新浪科技: ICANN副总裁李晓东:北京将设立首个代表处
- 互联网新闻-新浪科技: 周鸿t与《每经》争论的技术性解读
- 网易科技频道IT业界新闻: 格力集团总裁周少强被免职 被处党内警告处分
- 焦点新闻-新浪科技: 周鸿t与《每经》争论的技术性解读
- 互联网新闻-新浪科技: 腾讯在印尼成立合资公司推广微信
- Solidot: 索尼的新智能手机和平板可以在水下工作
- Solidot: 华为怀疑Firefox OS是否能取得成功
- 科技要闻-新浪科技: 腾讯在印尼成立合资公司推广微信
- 焦点新闻-新浪科技: 腾讯在印尼成立合资公司推广微信
- 互联网新闻-新浪科技: Facebook黏性滑坡探因:与用户生活相关性下降
- Solidot: 天文学家首次直接测量黑洞转速
- Solidot: Ubuntu开发者峰会将在线举行,每年四次
- 科技要闻-新浪科技: ThinkPad推首款Chromebook 针对学生市场
- 科技要闻-新浪科技: 中芯国际商务长季克非辞职转任公司顾问
- 网易科技频道IT业界新闻: 华硕今年加强西班牙和葡萄牙平板市场布局
- 焦点新闻-新浪科技: 索尼证实12亿美元出售东京办公大楼
- 焦点新闻-新浪科技: Facebook黏性滑坡探因:与用户生活相关性下降
- 焦点新闻-新浪科技: 中芯国际商务长季克非辞职转任公司顾问
- Solidot: Firefox OS的付费Web应用如何工作?
- 互联网新闻-新浪科技: Pandora限制移动音乐收听时间应对成本上涨
- 互联网新闻-新浪科技: 青芒果旅行网完成A轮融资
- 科技要闻-新浪科技: 电商纷纷变阵攻城略地:调整“雷同”各取所需
- 科技要闻-新浪科技: 青芒果旅行网完成A轮融资
- 手机资讯-新浪科技: 诺基亚豪言 WP会成为世界第一大系统
- 手机资讯-新浪科技: 移动4G版HTC One摄像头参数有变
- 网易科技频道IT业界新闻: 苹果前CEO:苹果现处于创新间歇期
- 焦点新闻-新浪科技: 英特尔进军低端Android平板市场挑战ARM
- 焦点新闻-新浪科技: 三星加强Android安全性:企业市场挑战黑莓
- 焦点新闻-新浪科技: 青芒果旅行网完成A轮融资
- 互联网新闻-新浪科技: 分析称Twitter估值100亿美元并不虚高
- 焦点新闻-新浪科技: 万得城确认3月退出中国市场
- 焦点新闻-新浪科技: 分析称Twitter估值100亿美元并不虚高
- ScienceDaily: Latest Science News: Faster, more ef...
- ScienceDaily: Latest Science News: New fabrication...
- ScienceDaily: Latest Science News: Discovery on an...
- 网易数码频道:相机资讯: 索尼推出A58单电/NEX-3N微单及4款新镜头
- Confirm your unsubscription from '焦点新闻-新浪科技'
- Confirm your unsubscription from '焦点新闻-新浪科技'
- Confirm your unsubscription from '焦点新闻-新浪科技'
- Confirm your unsubscription from '焦点新闻-新浪科技'
- 焦点新闻-新浪科技: 诺基亚的救赎:从燃烧平台到管理瘦身
- 网易科技频道IT业界新闻: 智能电视国内激活率仅3成
- Solidot: Stuxnet失落的一环被发现
- 焦点新闻-新浪科技: 苏泊尔发布2012年度业绩:净利润同比降2%
- ScienceDaily: Latest Science News: ScienceDaily: L...
- 互联网新闻-新浪科技: 即刻搜索高管调整:刘骏出局 邓亚萍面临困境
- 互联网新闻-新浪科技: 三星发布电子票据管理工具Wallet 挑战苹果
- Solidot: 优秀的R语言免费图书
- 科技要闻-新浪科技: 中芯国际CFO称公司今年继续保持盈利
- 焦点新闻-新浪科技: 即刻搜索高管调整:刘骏出局 邓亚萍或被架空
- 焦点新闻-新浪科技: 苏宁发布2012年度业绩:净利较2011年降44%
- 焦点新闻-新浪科技: 三星发布电子票据管理工具Wallet 挑战苹果
- 互联网新闻-新浪科技: 张朝阳:加大投入搜狐视频 18个月实现盈利
- 互联网新闻-新浪科技: 高德软件第四季度净利870万美元 同比增23%
- Solidot: 宜家肉丸风波,马肉不要紧但不能是中国生产
- Solidot: 微软发布开源云端C++SDK
- 科技要闻-新浪科技: 张朝阳:加大投入搜狐视频 18个月实现盈利
- 焦点新闻-新浪科技: 张朝阳:继续投入搜狐视频 18个月实现盈利
- 焦点新闻-新浪科技: 快讯:高德第四季度净利870万美元 同比增23%
- Solidot: CDN和托管商宣布支持动态内容压缩协议Railgun
- Solidot: 雅虎废除在家工作政策,有利于创新?
- 科技要闻-新浪科技: 索尼发布NEX-3N、A58及四款镜头新品
- 科技要闻-新浪科技: 戴尔复兴寄望私有化:转型进行时
- 科技要闻-新浪科技: 中国电子商会:智能电视平均激活率不到3成
- 焦点新闻-新浪科技: 戴尔复兴寄望私有化:转型进行时
- 焦点新闻-新浪科技: 中国电子商会:智能电视平均激活率不到3成
- 焦点新闻-新浪科技: 欧洲FTTH现状:俄罗斯异军突起 法国奋起直追
- 网易科技频道IT业界新闻: 报告称苹果应向IBM学习多分红 避免微软错误
- 互联网新闻-新浪科技: 互联网公司“下乡” :多种渠道宣传
- 互联网新闻-新浪科技: 太平洋皇冠证券维持巨人“与板块持平”评级
- Solidot: 未来的飞行员不需要弹射座椅
- Solidot: Google把QuickOffice移植到Chrome OS和Chrome浏览器
- 科技要闻-新浪科技: 互联网公司“下乡” :多种渠道宣传
- 科技要闻-新浪科技: 太平洋皇冠证券维持巨人“与板块持平”评级
- 焦点新闻-新浪科技: 太平洋皇冠证券维持巨人“与板块持平”评级
- 焦点新闻-新浪科技: 互联网公司“下乡” :多种渠道宣传
- 焦点新闻-新浪科技: 2013年度全球移动大奖揭晓 三星成最大赢家
- 网易科技频道IT业界新闻: Adobe推出手机版Photoshop Touch
- 网易数码频道:电脑硬件资讯: 支持系统休眠 华芸推出4款网络储存服务器
-
▼
二月
(1359)
没有评论:
发表评论