ScienceDaily: Latest Science News
Breaking science news and articles on global warming, extrasolar planets, stem cells, bird flu, autism, nanotechnology, dinosaurs, evolution -- the latest discoveries in astronomy, anthropology, biology, chemistry, climate and environment, computers, engineering, health and medicine, math, physics, psychology, technology, and more -- from the world's leading universities and research organizations.
Now hear this: Forerunners of inner-ear cells that enable hearing identified
http://feeds.sciencedaily.com/~r/sciencedaily/~3/Lb9W_1a7htY/130226081234.htm
Feb 26th 2013, 13:12
Feb. 26, 2013 — Researchers at the Stanford University School of Medicine have identified a group of progenitor cells in the inner ear that can become the sensory hair cells and adjacent supporting cells that enable hearing. Studying these progenitor cells could someday lead to discoveries that help millions of Americans suffering from hearing loss due to damaged or impaired sensory hair cells.
"It's well known that, in mammals, these specialized sensory cells don't regenerate after damage," said Alan Cheng, MD, assistant professor of otolaryngology. (In contrast, birds and fish are much better equipped: They can regain their sensory cells after trauma caused by noise or certain drugs.) "Identifying the progenitor cells, and the cues that trigger them to become sensory cells, will allow us to better understand not just how the inner ear develops, but also how to devise new ways to treat hearing loss and deafness."
The research will be published online Feb. 26 in Development. Cheng is the senior author. Former medical student Taha Jan, MD, and postdoctoral scholar Renjie Chai, PhD, share lead authorship of the study. Roel Nusse, PhD, a professor of developmental biology, is a co-senior author of the research.
The inner ear is a highly specialized structure for gathering and transmitting vibrations in the air. The auditory compartment, called the cochlea, is a snail-shaped cavity that houses specialized cells with hair-like projections that sense vibration, much like seaweed waving in the ocean current. These hair cells are responsible for both hearing and balance, and are surrounded by supporting cells that are also critical for hearing.
Twenty percent of all Americans, and up to 33 percent of those ages 65-74, suffer from hearing loss. Hearing aids and, in severe cases, cochlear implants can be helpful for many people, but neither address the underlying cause: the loss of hair cells in the inner ear. Cheng and his colleagues identified a class of cells called tympanic border cells that can give rise to hair cells and the cells that support them during a phase of cochlear maturation right after birth.
"Until now, these cells have had no clear function," said Cheng. "We used several techniques to define their behavior in cell culture dishes, as well as in mice. I hope these findings will lead to new areas of research to better understand how our ears develop and perhaps new ways to stimulate the regeneration of sensory cells in the cochlea."
Cheng recently received a grant from the California Institute for Regenerative Medicine to study the limited regeneration of the same sensory hair cells that occur in a different region of the inner ear called the vestibular system, which helps us balance. Lessons learned there may also translate into aid for patients with hearing loss.
Although regeneration of sensory hair cells does not happen naturally, recent research has suggested that the mammalian ear may harbor a sub-population of -- presumably inactive -- progenitor cells. The research team led by Cheng and Nusse used a strain of laboratory mice that allowed the scientists to track the activation of a cell-signaling pathway driven by a protein called Wnt. The Wnt pathway has previously been shown to be involved in many developmental functions, and it drives the renewal and proliferation of many types of stem cells.
"We wanted to investigate the Wnt pathway because of its tremendous influence in the development and regeneration of many other organs," said Cheng.
The researchers found that tympanic border cells, or TBCs, which form a thin layer under the sensory epithelium, are actively dividing in mice during the first three weeks after birth (the time corresponding to about the first trimester of human development, during which the ability to hear is established) and give rise to at least a subset of sensory and non-sensory cells in the ear. They also divided vigorously in isolated cochlea when the Wnt pathway was activated, and stopped when the pathway was inhibited. Finally, the researchers showed that purified TBCs were able to specialize into hair cells and support cells when cultured in a laboratory dish.
"It's surprising to think that these progenitor cells are among this largely underappreciated group of cells," said Cheng. "This study also highlights that, even in mice, there is a lot of maturation occurring after birth as hearing develops. There's clearly a lot more to be understood. Next we'd like to look at these cells in models of hearing loss. Do they have the ability to regenerate? If so, under what conditions?"
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by Stanford University Medical Center, via EurekAlert!, a service of AAAS.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
T. A. Jan, R. Chai, Z. N. Sayyid, R. van Amerongen, A. Xia, T. Wang, S. T. Sinkkonen, Y. A. Zeng, J. R. Levin, S. Heller, R. Nusse, A. G.-L. Cheng. Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Development, 2013; 140 (6): 1196 DOI: 10.1242/dev.087528
Note: If no author is given, the source is cited instead.
Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.
This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers. Five Filters recommends: Eyes Like Blank Discs - The Guardian's Steven Poole On George Orwell's Politics And The English Language.
You are receiving this email because you subscribed to this feed at http://blogtrottr.com
If you no longer wish to receive these emails, you can unsubscribe here:
http://blogtrottr.com/unsubscribe/cz0/tSbHWJ
订阅:
博文评论 (Atom)
博客归档
-
▼
2013
(16909)
-
▼
二月
(1359)
- ScienceDaily: Latest Science News: 'Crazy-busy' Ca...
- ScienceDaily: Latest Science News: Metal ions regu...
- 互联网新闻-新浪科技: JG Capital维持优酷增持评级 目标股价22美元
- 互联网新闻-新浪科技: Facebook发力Exchange实时竞价广告挑战谷歌
- 互联网新闻-新浪科技: 京东回应阿芙欠款事件 称结款延迟源于发票错误
- 科技要闻-新浪科技: 京东回应阿芙欠款事件 称结款延迟源于发票错误
- 焦点新闻-新浪科技: 巴诺第三财季意外亏损 Nook业务营收锐减
- 焦点新闻-新浪科技: Facebook发力Exchange实时竞价广告挑战谷歌
- 焦点新闻-新浪科技: 黑莓高管称正考虑推出新平板电脑
- ScienceDaily: Latest Science News: Novel wireless ...
- ScienceDaily: Latest Science News: After the human...
- ScienceDaily: Latest Science News: Fusion as an en...
- 科技要闻-新浪科技: 巴诺第三财季意外亏损 Nook业务营收锐减
- ScienceDaily: Latest Science News: Atoms with quan...
- ScienceDaily: Latest Science News: Three overstret...
- ScienceDaily: Latest Science News: River regulatio...
- Confirm your unsubscription from '焦点新闻-新浪科技'
- 互联网新闻-新浪科技: ICANN副总裁李晓东:北京将设立首个代表处
- Solidot: 寻找史前裸女艺术品的意义
- Solidot: Ada Initiative阻止关于性的演讲引发争议
- 科技要闻-新浪科技: ICANN副总裁李晓东:北京将设立首个代表处
- 焦点新闻-新浪科技: ICANN副总裁李晓东:北京将设立首个代表处
- 互联网新闻-新浪科技: 周鸿t与《每经》争论的技术性解读
- 网易科技频道IT业界新闻: 格力集团总裁周少强被免职 被处党内警告处分
- 焦点新闻-新浪科技: 周鸿t与《每经》争论的技术性解读
- 互联网新闻-新浪科技: 腾讯在印尼成立合资公司推广微信
- Solidot: 索尼的新智能手机和平板可以在水下工作
- Solidot: 华为怀疑Firefox OS是否能取得成功
- 科技要闻-新浪科技: 腾讯在印尼成立合资公司推广微信
- 焦点新闻-新浪科技: 腾讯在印尼成立合资公司推广微信
- 互联网新闻-新浪科技: Facebook黏性滑坡探因:与用户生活相关性下降
- Solidot: 天文学家首次直接测量黑洞转速
- Solidot: Ubuntu开发者峰会将在线举行,每年四次
- 科技要闻-新浪科技: ThinkPad推首款Chromebook 针对学生市场
- 科技要闻-新浪科技: 中芯国际商务长季克非辞职转任公司顾问
- 网易科技频道IT业界新闻: 华硕今年加强西班牙和葡萄牙平板市场布局
- 焦点新闻-新浪科技: 索尼证实12亿美元出售东京办公大楼
- 焦点新闻-新浪科技: Facebook黏性滑坡探因:与用户生活相关性下降
- 焦点新闻-新浪科技: 中芯国际商务长季克非辞职转任公司顾问
- Solidot: Firefox OS的付费Web应用如何工作?
- 互联网新闻-新浪科技: Pandora限制移动音乐收听时间应对成本上涨
- 互联网新闻-新浪科技: 青芒果旅行网完成A轮融资
- 科技要闻-新浪科技: 电商纷纷变阵攻城略地:调整“雷同”各取所需
- 科技要闻-新浪科技: 青芒果旅行网完成A轮融资
- 手机资讯-新浪科技: 诺基亚豪言 WP会成为世界第一大系统
- 手机资讯-新浪科技: 移动4G版HTC One摄像头参数有变
- 网易科技频道IT业界新闻: 苹果前CEO:苹果现处于创新间歇期
- 焦点新闻-新浪科技: 英特尔进军低端Android平板市场挑战ARM
- 焦点新闻-新浪科技: 三星加强Android安全性:企业市场挑战黑莓
- 焦点新闻-新浪科技: 青芒果旅行网完成A轮融资
- 互联网新闻-新浪科技: 分析称Twitter估值100亿美元并不虚高
- 焦点新闻-新浪科技: 万得城确认3月退出中国市场
- 焦点新闻-新浪科技: 分析称Twitter估值100亿美元并不虚高
- ScienceDaily: Latest Science News: Faster, more ef...
- ScienceDaily: Latest Science News: New fabrication...
- ScienceDaily: Latest Science News: Discovery on an...
- 网易数码频道:相机资讯: 索尼推出A58单电/NEX-3N微单及4款新镜头
- Confirm your unsubscription from '焦点新闻-新浪科技'
- Confirm your unsubscription from '焦点新闻-新浪科技'
- Confirm your unsubscription from '焦点新闻-新浪科技'
- Confirm your unsubscription from '焦点新闻-新浪科技'
- 焦点新闻-新浪科技: 诺基亚的救赎:从燃烧平台到管理瘦身
- 网易科技频道IT业界新闻: 智能电视国内激活率仅3成
- Solidot: Stuxnet失落的一环被发现
- 焦点新闻-新浪科技: 苏泊尔发布2012年度业绩:净利润同比降2%
- ScienceDaily: Latest Science News: ScienceDaily: L...
- 互联网新闻-新浪科技: 即刻搜索高管调整:刘骏出局 邓亚萍面临困境
- 互联网新闻-新浪科技: 三星发布电子票据管理工具Wallet 挑战苹果
- Solidot: 优秀的R语言免费图书
- 科技要闻-新浪科技: 中芯国际CFO称公司今年继续保持盈利
- 焦点新闻-新浪科技: 即刻搜索高管调整:刘骏出局 邓亚萍或被架空
- 焦点新闻-新浪科技: 苏宁发布2012年度业绩:净利较2011年降44%
- 焦点新闻-新浪科技: 三星发布电子票据管理工具Wallet 挑战苹果
- 互联网新闻-新浪科技: 张朝阳:加大投入搜狐视频 18个月实现盈利
- 互联网新闻-新浪科技: 高德软件第四季度净利870万美元 同比增23%
- Solidot: 宜家肉丸风波,马肉不要紧但不能是中国生产
- Solidot: 微软发布开源云端C++SDK
- 科技要闻-新浪科技: 张朝阳:加大投入搜狐视频 18个月实现盈利
- 焦点新闻-新浪科技: 张朝阳:继续投入搜狐视频 18个月实现盈利
- 焦点新闻-新浪科技: 快讯:高德第四季度净利870万美元 同比增23%
- Solidot: CDN和托管商宣布支持动态内容压缩协议Railgun
- Solidot: 雅虎废除在家工作政策,有利于创新?
- 科技要闻-新浪科技: 索尼发布NEX-3N、A58及四款镜头新品
- 科技要闻-新浪科技: 戴尔复兴寄望私有化:转型进行时
- 科技要闻-新浪科技: 中国电子商会:智能电视平均激活率不到3成
- 焦点新闻-新浪科技: 戴尔复兴寄望私有化:转型进行时
- 焦点新闻-新浪科技: 中国电子商会:智能电视平均激活率不到3成
- 焦点新闻-新浪科技: 欧洲FTTH现状:俄罗斯异军突起 法国奋起直追
- 网易科技频道IT业界新闻: 报告称苹果应向IBM学习多分红 避免微软错误
- 互联网新闻-新浪科技: 互联网公司“下乡” :多种渠道宣传
- 互联网新闻-新浪科技: 太平洋皇冠证券维持巨人“与板块持平”评级
- Solidot: 未来的飞行员不需要弹射座椅
- Solidot: Google把QuickOffice移植到Chrome OS和Chrome浏览器
- 科技要闻-新浪科技: 互联网公司“下乡” :多种渠道宣传
- 科技要闻-新浪科技: 太平洋皇冠证券维持巨人“与板块持平”评级
- 焦点新闻-新浪科技: 太平洋皇冠证券维持巨人“与板块持平”评级
- 焦点新闻-新浪科技: 互联网公司“下乡” :多种渠道宣传
- 焦点新闻-新浪科技: 2013年度全球移动大奖揭晓 三星成最大赢家
- 网易科技频道IT业界新闻: Adobe推出手机版Photoshop Touch
- 网易数码频道:电脑硬件资讯: 支持系统休眠 华芸推出4款网络储存服务器
-
▼
二月
(1359)
没有评论:
发表评论